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INTRODUCTION   

We hypothesize that the profiling of the human serum metabolome can unveil underlying 
biological processes that are associated with the initiation, aggressiveness, and prognosis of 
prostate cancer. 

BODY  

Specific Aim 1: To compare pre-treatment metabolite levels between population controls 
and prostate cancer cases 

Timetable of research accomplishments of Specific Aim 1 as outlined in the Statement of Work: 

Task 1 Perform metabolic profiling in pre-treatment serum samples from controls, 
localized cases and aggressive cases: 

1.a Deliver serum samples from population controls, indolent cases and aggressive 
cases from Sweden to Colorado State University. (Months 1-3). 

1.b Sample preparation at Colorado State University. (Months 1-6). 

1.c Metabolic profiling of serum samples at Colorado State University. (Months 7-
12).  

1.d Statistical analysis of metabolite levels. (Months 13-15). 

1.e Manuscript preparation/submission. (Months 16-18). 

Progress report 
All serum samples have been delivered from Sweden to Colorado State University (1.a) where 
they have been prepared for metabolomic profiling (1.b). Metabolomic profiling has been 
completed for all samples (1.c) and statistical analysis of generated data has been completed 
(1.d). Manuscript has been prepared and submitted for publication (1.e). 

Metabolite profiling 
The raw metabolomics profiling data, which has three dimensions, mass-to-charge ratio, 
retention time, and signal intensity, was analyzed to identify peaks and assess magnitudes using 
XCMS (version 1.23.7)1 in R version 2.12.12 (R Development Core Team, 2008). Identification 
of peaks in each chromatogram was performed by the “matchedFilter” method in XCMS with 
default parameters except setting full width at half maximum to 8 seconds, the signal to noise 
ratio threshold to 3, and allowing 100 peaks at maximum for each extracted ion chromatogram. 
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Table 1. Descriptive statistics by prostate cancer status1. 

 Controls 
(N = 188) 

Cases 
(less aggressive) 

(N = 188) 

Cases 
(more 

aggressive) 
(N = 99) 

Tumor stage (T)    
   1-2  100% (0) 36% (36) 
   3-4  0% (0) 64% (63) 
Nodal stage (N)    
   N0  6% (12) 15% (15) 
   N1  0% (0) 5% (5) 
   NX2  94% (176) 80% (79) 
Distal stage (M)    
   M0  24% (45) 46% (46) 
   M1  0% (0) 5% (5) 
   MX  76% (143) 48% (48) 
Gleason score    
   2-6  100% (188) 28% (28) 
   7  0% (0) 31% (31) 
   8-10  0% (0) 26% (26) 
   NA  0% (0) 14% (14) 
PSA3 (ng/ml) 0.9 (0.6-1.4) 6.6 (4.7-8.2) 19.6 (10.4-38.1) 
Age4 (years) 63.7 (60.1-70.7) 65.8 (61.4-70.5) 73.7 (66.5-77.1) 
Body mass index (kg/m2) 26.3 (24.2-27.8) 25.7 (24.1-28.1) 26.0 (23.9-28.7) 
Sample storage time 
(days)    

   2161-2421 39% (74) 38% (72) 26% (25) 
   2448-2716 46% (86) 29% (55) 28% (27) 
   2721-2990 15% (28) 21% (39) 24% (24) 
   3016-3276 0% (0) 12% (22) 22% (22) 
1 Continuous variables are reported as median (interquartile range), numbers in 
brackets are frequencies. 
2 NX and MX = not assessed. 
3 PSA = prostate specific antigen  
4 Age represents age at inclusion (controls) or age at diagnosis (cases) 

The peaks that are likely to represent the same molecules were grouped across samples with an 8 
second band width and 1% threshold in order to neglect the group in which the peak was 
identified from less than 1% of the samples. The retention time within a peak group was adjusted 
by the method “loess” with “gaussian" fitting. The time-wise corrected peaks were re-grouped 
with the same parameters as above in XCMS. Any samples for which the peaks were missing 
were filled as if a peak existed at the same retention time. The magnitude of a peak was 
calculated by integrating intensities. Output from this software is in the form of an aligned data 
matrix consisting of a large number of features (each feature represents one mass at a given 
retention time) suitable for further processing. 
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Population characteristics 
Pertinent characteristics of the study population are displayed in Table 1. An increasing trend of 
age was observed across disease status with lowest age among controls and highest age among 
more aggressive cases. Body mass index was equally distributed across groups while PSA levels 
were strongly correlated with disease status. A trend of longer sample storage time was observed 
among cases as compared to control subjects. According to the study design, Gleason score and 
TNM stage were strongly shifted against more severe disease among the more aggressive cases 
compared to the less aggressive cases.  

Association between individual profiles and disease 
A total of 6,138 unique molecular features from metabolomics profiling were retained for testing 
for association with prostate cancer status. Association between each normalized feature and 
prostate cancer status was assessed through linear regression models with each feature’s 
abundance as the outcome and disease status as categorical predictor variable (with levels: 
control subject, less aggressive disease, more aggressive disease). To adjust for potential 
confounding factors, all analyses were further adjusted for age at inclusion/diagnosis and sample 
storage time, represented by a categorical variable dividing storage time into four equally spaced 
time periods. A quantile-quantile plot of observed versus expected –log10 p-values with 
associated 95% confidence intervals is given in Figure 1, indicating a slight excess of significant 
tests. 

           A          B 

 
Figure 1. Quantile-quantile plots of  -log10 p-values from association tests between 6,138 
single metabolite profiles (A) and 6,138x6,137/2 pairwise metabolite profile differences (B) 
and prostate cancer status (ANOVA test). 

 
In Table 2, details of the top four significant associations (P < 1.0 x 10-3) are given. Applying a 
Bonferroni correction (significance threshold =0.05/6138 = 8.1 x 10-6), two features remained 
study-wide significant (595.4_153, P=4.0 x 10-6; 422.2_315, p=7.1 x 10-6). 
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Table 2.  Metabolite features associated with prostate cancer at P < 1.0 x 10-3. 
Molecular feature 
(m/z retention time)1 

Prostate cancer 
association P-value2 

Metabolite 
identification 

Identification 
confidence 

595.4_153 4.0 x 10-6 Unknown 4 
422.2_315 7.1 x 10-6 Unknown 4 
174.1_53 6.6 x 10-4 Unknown 4 
260_142 9.1 x 10-4 Unknown 4 
1 m/z = mass to charge ratio. 
2 P-values from ANOVA test (2 df), adjusted for age and sample storage time. 
 
Metabolite genome-wide association analysis 
To further explore identified metabolite features metabolite genome-wide association analysis 
was performed. Identification of association between metabolites and prostate cancer related 
genetic variation would further implicate importance of the identified metabolite feature. In 
addition, associated enzymatic sequence coding may be helpful in feature identification. The four 
metabolites most strongly associated to prostate cancer (Table 2) were explored for quantative 
trait association with 1.4 million single nucleotide polymorphisms (SNPs) distributed across the 
genome. In Figure 2 a Manhattan plot of all association results is displayed. The position of the 
SNP with the lowest P-value for each feature in Table 2 is reported in Table 3, along with the 
marker's location in relation to the nearest annotated gene.  

For each genome-wide set of metabolite-SNP tests, the Bonferroni- corrected study significance 
threshold is 0.05/1442840 = 3.5 x 10-8. For one of the four metabolites, study-wide significance 
was observed; abundance of metabolite feature 174.1_53 was associated with the SNP rs2247035 
at a significance level of 1.4 x 10-8. This SNP is located in an intron of the gene interleukin 13 
receptor, alpha 1 (IL13RA1) on chromosome Xq24. Although IL13RA1 itself has not to our 
knowledge been associated with PC before, the alpha 2 chain of the same receptor (IL13RA2) has 
been reported to be differentially expressed in a metastatic prostate cancer cell line, and 
suggested as a target for prostate cancer treatment3. 

The second strongest association (P = 4.9 x 10-8) was observed between the metabolite feature 
595.4_153 and variation in the gene phosphodiesterase 7B (PDE7B) on chromosome 6q23, 
whose protein product hydrolyzes the second messenger cAMP, a key regulator of many 
important physiological processes. 



  
   

8 

 
Figure 2. Manhattan plot of association between four metabolite features and 1.4 
million SNPs distributed across the genome. 

 

Finally, metabolite features 422.2_135 and 260_142 showed strongest association with genetic 
variation in genes neuregulin 3 (NRG3, P = 1.4 x 10-6, chromosome10q23) and UDP 
glycosyltransferase 3 family, polypeptide A1 (UGT3A1, P = 4.6 x 10-6, chromosome 5p13), 
respectively. NRG3, encoding a direct ligand for the ERBB4 tyrosine kinase receptor, act as a 
growth factor and have been suggested in the aetiology of several cancers, including prostate and 
breast4. UGT3A1 acts on steroids, particularly estrogen analogs5, and hypermethylation of this 
gene in breast cancer tissue has been associated with tumor relapse and worse survival6. 

Table 3.  Metabolite genome-wide association results. 

Molecular feature 
(m/z retention time)1 

Metabolite 
GWAS 

lowest P value 

Genomic position 
(Chr:bp, hg18) 

Nearest gene 
(SNP location) 

595.4_153 4.9 x 10-8 Chr6:136374051 PDE7B (intron) 
422.2_135 1.4 x 10-6 Chr10:83842772 NRG3 (intron) 
174.1_53 1.4 x 10-8 ChrX:117756115 ILI3RA1 (intron) 
260_142 4.6 x 10-6 Chr5:35999264 UGT3A1 (intron) 
1 m/z = mass to charge ratio. 
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Association between pairs of profiles and disease 
Next we explored pairwise logarithmically transformed metabolite differences (corresponding to 
ratios on the original scale) for association with prostate cancer. Metabolite ratios have been 
suggested to show more robust associations than single metabolic features, since they may 
correlate with enzyme function or flow through metabolic pathways. Top results from the 
analysis of 6138*6137/2 pairwise differences are presented in Figure 1 and Table 4. No 
metabolite pair was study-wide significantly associated to PC after Bonferroni correction for the 
number of tests performed (significance threshold = 2.7 x 10-9). Seven metabolite feature pairs 
were associated at a significance threshold of 1.0E-7. Five of these pairs involved the metabolic 
feature 595.4_153, which was the most strongly associated feature in univariate analyses (Table 
2). Further metabolite features that were implicated in these pairwise assessments were 
114.1_118, 411.3_285, 443.3_275, 451.2_266 and 597.4_306. Each of the two remaining pairs 
significant at the 1.0E-7 threshold included feature 422.2_315, the second most strongly 
univariate associated metabolite, in combination with features 226.2_212 and 581.3_446. 
 

Table 4.  Pairwise metabolite features associated with prostate cancer. 
Molecular feature pair 
(m/z retention time)1 

Association 
P value Metabolite identification Identification 

confidence 
595.4_153 – 114.1_118 3.2 x 10-8 Unknown – Caprolactam 4 – 1 
595.4_153 – 443.3_275 4.2 x 10-8 Unknown – Unknown 4 – 4 
597.4_306 - 595.4_153 7.1 x 10-8 L-Phosphatidic acid – Unknown 2 – 4 
595.4_153 - 451.2_266 7.7 x 10-8 Unknown – Unknown 4 – 4 
595.4_153 - 411.3_285 8.4 x 10-8 Unknown – Peptide (Tyr-Lys-Thr) 4 – 3 
581.3_440 - 422.2_315 9.4 x 10-8 Unknown – Unknown 4 – 4 
422.2_315 - 226.2_212 1.0 x 10-7 Unknown – Unknown 4 - 4 
1 m/z = mass to charge ratio. 
 

Feature identification 
Identification of the top ranked features from univariate and pairwise analysis was performed 
according to the following workflow: 1) Accurate mass measurements are searched against a 
variety of metabolite databases including the Human Metabolome Database, Metlin, and 
LipidMaps. 2) A combination of the accurate mass measurement and the isotopic distribution of 
the mass spectrometry peaks are imported into the elemental composition calculator (Waters 
MassLynx software) to generate a “best fit” molecular formula. 3) The best-fit molecular 
formula is used to filter the database search results to yield a putative identification. 4) When 
possible, fragmentation information for the metabolite feature are extracted from the mass 
spectrometry analysis and compared with fragmentation of the putative metabolite found in the 
literature, and/or mass spectral database, and/or from a commercially available pure standard. We 
report metabolite identification confidence based on metabolomics standards initiative 
recommendations7. Specifically, level 1 refers to confident molecular identification based on 
orthogonal analytical parameters (accurate mass, retention time, and MS/MS fragmentation) 
relative to an authentic compound. Level 2 refers to a putative identification based on 
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physicochemical properties and/or spectral similarity with literature or spectral libraries. Level 3 
refers to the putative identification of a compound class based on physicochemical properties or 
spectral similarity. Level 4 refers to an unknown compound 

For the four most strongly associated features in univariate analysis (Table 2) we were 
unsuccessful in providing the molecular identity of any of the feature. From the pairwise analysis 
we were able to identify three of the seven additional features implicated including caprolactam, 
L-Phosphatidic acid and the peptide Tyr-Lys-Thr. Each of these molecules was implicated in 
combination with 595.4_153, the most strongly associated metabolite feature. We were unable to 
retrieve molecular identities for any of the two features implicated in combination with the 
422.2_315 feature (Table 4). Of note, caprolactam is a non-endogenous compound used in the 
manufacturing of nylon and produced around the world in very large quantities. Phosphatidic 
acids are fatty acid derivatives of glycerophosphates, and are established intracellular signaling 
lipids. 
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Specific Aim 2: To compare post-treatment metabolic levels between prostate cancer 
patients with lethal and non-lethal disease outcome 

Timetable of research accomplishments of Specific Aim 2 as outlined in the Statement of Work:  

Progress report 

All serum samples have been delivered from Sweden to Colorado State University (2.a) where 
they have been prepared for metabolomic profiling (2.b). Profiling of metabolite levels has been 
completed (2.c). All statistical analysis of metabolite features have been completed (2.d). A 
manuscript is under preparation (2.e).  

Metabolite profiling 

The raw metabolomics profiling data was processed as described under specific Aim 1 using 
XCMS (version 1.23.7)1 in R version 2.12.1 (R Development Core Team, 2008). 

 
Population characteristics 

Pertinent characteristics of the study population are displayed in Table 5. Body mass index was 
equally distributed between non-lethal and lethal patients. According to the matched study 
design, prognostic risk group and primary treatment were equally distributed between groups. 
Majority of patients were in the highest prognostic risk group (metastatic disease) and the most 
common treatment option was GnRH in combination with antiandrogene.  

 

  

Task 2 Perform metabolic profiling in post-treatment serum samples from cases with 
lethal and non-lethal disease outcome: 

2.a Deliver 608 serum samples from Sweden to Colorado State University. (Months 
19-21). 

2.b Sample preparation at Colorado State University. (Months 19-24). 

2.c Metabolic profiling of serum samples at Colorado State University. (Months 25-
30).  

2.d Statistical analysis of metabolite levels. (Months 31-33). 

2.e Manuscript preparation/submission. (Months 34-36). 



  
   

12 

Table 5. Clinical characteristics of prostate cancer patients.   
 Alive Deceased 
Characteristic (N = 267) (N = 267) 
Follow-up (tears), mean (range) 6.4 (5.2-8.2) 2.8 (0.1-7.1) 
Age at diagnosis (years), mean 
(SD) 

69.2 (7.0) 69.1 (7.0) 

BMI (kg/m2), mean (SD) 26.2 (3.2) 26.4 (3.5) 
Prognostic risk group, no (%)   
   Intermediate 4 (1.5) 4 (1.5) 
    High 19 (7.1) 19 (7.1) 
   Metastatic 244 (91.4) 244 (91.4) 
Primary treatment   
   Hormones 1 (0.4) 1 (0.4) 
   Surgical castration 28 (10.5) 28 (10.5) 
   Antiandrogene 46 (17.2) 46 (17.2) 
   GnRH 74 (27.7) 74 (27.7) 
   GnRH and antiandrogene 118 (44.2) 118 (44.2) 
 

Association between individual profiles and prostate cancer survival 
A total of 5,209 unique molecular features from metabolomics profiling were retained for testing 
for association with prostate cancer survival. Association between each normalized feature and 
disease survival was assessed through stratified Cox regression proportional hazard models. All 
patients were followed from date of diagnosis until date of death from prostate cancer or 
censoring (at death from other causes other than prostate cancer or at end of follow-up). 

 

Table 6. Metabolite features associated with prostate cancer survival at P < 1.0 x 10-3. 
Molecular feature 
(m/z retention time)1 Hazard ratio (95% CI) P-value2 

148.5_415 0.92 (0.88-0.96) 1.3 x 10-4 
272.7_415 0.91 (0.86-0.96) 3.9 x 10-4 
244.7_415 0.35 (0.19-0.63) 4.1 x 10-4 
508.3_309 1.71 (1.26-2.32) 6.0 x 10-4 
743.6_671 0.93 (0.89-0.97) 7.7 x 10-4 
639.4_383 4.07 (1.80-9.24) 7.7 x 10-4 
742.6_671 0.98 (0.96-0.99) 9.1 x 10-4 
631.6_740 1.33 (1.12-1.58) 9.7 x 10-4 
1 m/z = mass to charge ratio. 
2 P-values from stratified Cox regression analysis. 
 

In Table 6, the top eight significant associations (P < 1.0 x 10-3) are given. Applying a Bonferroni 
correction (significance threshold =0.05/5209 = 9.6 x 10-6), no feature was study-wide 
significant. The lack of association between metabolite features and prostate cancer survival was 
apparent from the quantile-quantile plot of observed versus expected –log10 p-values with 
associated 95% confidence intervals (Figure 3), indicating no excess of significant associations.  
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Figure 3. Quantile-quantile plots of  -log10 p-values from association 
tests between 5,209 single metabolite profiles and prostate cancer 
survival (stratified Cox regression). 
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Table 7. Pairwise metabolite features associated with prostate cancer survival at P 
< 5.0 x 10-6. 
Molecular feature pair 
(m/z retention time)1 Hazard ratio (95% CI) P-value2 

413.2_411 – 394.3_504 1.98 (1.70-2.27) 2.2 x 10-6 
508.3_309 – 394.3_504 1.70 (1.48-1.92) 2.3 x 10-6 
372.1_55 – 332.3_449 1.31 (1.20-1.42) 2.5 x 10-6 
344.3_211 – 229_137 1.84 (1.58-2.09) 2.9 x 10-6 
350.1_56 – 521.2_632 1.20 (1.12-1.27) 2.9 x 10-6 
350.1_56 – 332.3_449 1.20 (1.13-1.28) 2.9 x 10-6 
513.4_349 – 394.3_504 2.09 (1.78-2.40) 3.0 x 10-6 
350.1_56 – 538.2_632 1.19 (1.12-1.27) 3.2 x 10-6 
350.1_56 – 610.2_681 1.20 (1.12-1.27) 3.4 x 10-6 
508.3_309 – 319.2_201 1.75 (1.51-1.99) 3.5 x 10-6 
513.4_349 – 319.2_201 2.33 (1.97-2.69) 3.6 x 10-6 
344.3_211 – 417.8_707 1.80 (1.56-2.05) 3.6 x 10-6 
413.2_411 – 229_137 1.90 (1.63-2.18) 3.8 x 10-6 
743.6_671 – 508.3_309 0.61 (0.40-0.82) 3.9 x 10-6 
508.3_309 – 417.8_707 1.62 (1.42-1.83) 4.0 x 10-6 
508.3_309 – 491.4_471 1.50 (1.32-1.67) 4.0 x 10-6 
413.2_411 – 503.1_632 1.67 (1.45-1.88) 4.1 x 10-6 
344.3_211 – 129.1_153 1.87 (1.60-2.13) 4.1 x 10-6 
404.8_679 – 383.2_240 0.63 (0.44-0.83) 4.2 x 10-6 
350.1_56 – 543.1_631 1.21 (1.13-1.28) 4.3 x 10-6 
508.3_309 – 404.8_679 1.40 (1.26-1.55) 4.4 x 10-6 
394.3_504 – 344.3_211 0.56 (0.31-0.81) 4.7 x 10-6 
742.6_671 – 508.3_309 0.62 (0.42-0.83) 4.8 x 10-6 
485.3_309 – 394.3_504 1.70 (1.47-1.93) 4.9 x 10-6 
742.6_671 – 585.4_510 0.53 (0.25-0.80) 4.9 x 10-6 
1 m/z = mass to charge ratio. 
2 P-values from stratified Cox regression analysis. 
  
Metabolite genome-wide association analysis 
As in specific Aim 1 we performed metabolite genome-wide association analysis for the 
metabolites reported in Table 6. This effort revealed no study-wide significant associations 
between any genetic variants for any of the eight metabolite features (data not-shown). 
 

Association between pairs of profiles and prostate cancer survival 
Next we explored pairwise logarithmically transformed metabolite differences (corresponding to 
ratios on the original scale) for association with prostate cancer survival. Top results from the 
analysis of 5209*5208/2 pairwise differences are presented in Table 7. No metabolite pair was 
study-wide significantly associated to PC after Bonferroni correction for the number of tests 
performed (significance threshold = 2.7 x 10-9).  
 
Of the eight top significant metabolite features identified in univariate analysis (Table 6) three 
were implicated in the pairwise analysis. Feature 508.3_309 was observed associated with 
prostate cancer survival in combination with features 394.3_504, 319.2_201, 417.8_707, 
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491.4_471 and 404.8_679. In addition, feature 508.3_309 was also implicated in combination 
with features 743.6_671 and 742.6_671, both of which were observed in the univariate analysis. 
 

Feature identification 
Identification of the top ranked features from univariate and pairwise analysis is ongoing 
according to same protocol as described under specific aim 1. 
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KEY RESEARCH ACCOMPLISHMENTS 

• A total of 6,132 metabolite features have been derived for the first population of 
population controls, localized prostate cancer cases, and aggressive prostate cancer cases. 

• A total of 5,209 metabolite features have been derived for the second population 
contrasting lethal and non-lethal outcome of prostate cancer. 

• Statistical assessment of association between metabolite features and prostate cancer 
status and prostate cancer survival has been performed. 

• Molecules Caprolactam, L-Phosphatidic acid, and Peptide (Tyr-Lys-Thr) have been 
identified as weakly associated with prostate cancer status. 

• Metabolite genome-wide association has been performed for prostate cancer related 
metabolite features. 

• Four genes have been observed as associated with prostate cancer related metabolite 
features: PDE7B, NRG3, ILI3RA1, and UGT3A1. 

• Several metabolite features weakly associated with prostate cancer survival have been 
identified and molecular identification of these is ongoing. 

REPORTABLE OUTCOMES 

Manuscript 

R. Karlsson, M. Hong, J. Prenni, C. Broeckling, H Grönberg, J. Prince, F. Wiklund. Untargeted 
serum metabolomic profiling of prostate cancer. Submitted. 

Abstract 

R. Szulkin, R. Karlsson, A. Heuberger, M. Hong, C. Broeckling, J. Prenni, J. Prince, F. Wiklund. 
Serum metabolomics and prostate cancer survival. Abstract #1189T. Presented at the 62nd 
Annual Meeting of The American Society of Human Genetics, November 7, 2012 in San 
Francisco, California, US. 

CONCLUSION 

In this project we have successfully performed untargeted serum metabolomic profiling of two 
large population-based prostate cancer populations. Molecular features have been derived and 
explored for association with prostate cancer status (6,138 features, 475 subjects) and prostate 
cancer survival (5,209 features, 534 subjects). Assessment of metabolite features revealed two 
features as study-wide significantly associated with prostate cancer status; however, we were not 
able to identify the molecular identity of these features, probably due to their low observed 
abundance. In pairwise metabolite feature assessment only weak association (not study-wide 
significantly associated) with prostate cancer status was observed. Among features indicated in 
the pairwise analysis molecular identification revealed Caprolactam, L-Phosphatidic acid, and 
Peptide (Tyr-Lys-Thr) as possibly associated with prostate cancer aetiology. Finally we 
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performed genome-wide assessment of the four top associated metabolite features. Four genes 
were implicated from this effort including PDE7B, NRG3, ILI3RA1 and UGT3A1 of which the 
association between metabolite feature 174.1_53 and gene ILI3RA1 was genome-wide 
significant (P = 1.4 x 10-8). This finding is interesting since although IL13RA1 itself has not been 
associated with prostate cancer, the alpha 2 chain of the same receptor (IL13RA2) has been 
reported to be differentially expressed in a metastatic prostate cancer cell line, and suggested as a 
target for prostate cancer treatment3. Compared to the findings related to the first study 
population (prostate cancer status) no study-wide significant associations between any metabolite 
feature and prostate cancer survival was observed in the second study population. Overall these 
results are negative regarding our effort to identify novel biomarker of clinical use for early 
prostate cancer detection and treatment monitoring. It remains to be shown if our results will 
improve our understanding of the underlying biological processes that are associated with 
initiation and prognosis of prostate cancer. 

We have performed metabolite profiling using blood samples collected throughout Sweden. 
Participating subjects were asked to visit nearest health clinic to donate a blood sample. Drawn 
blood was sent by mail overnight to the biobank at Umeå University for preparation and storage 
(-80 oC). It is possible that molecules relevant for prostate cancer initiation and progression may 
have degraded during this process and thereby been impossible to detect in our study. Therefore 
we may have missed molecules involved in important biological processes related to prostate 
cancer aetiology due to sample handling. However, regarding identifying new clinically relevant 
biomarkers we argue that our design was appropriate since quickly degrading molecules will be 
of limited clinical use. 

Application of metabolomics to identify novel disease biomarkers has attracted increasing 
interest8. Early-stage diagnosis of incident cancer may considerably improve clinical outcome 
through early treatment. Metabolomic profiling has been reported for numerous types of 
malignancies including colorectal cancer9, lung cancer10, primary liver cancer11, ovarian 
cancer12, and breast cancer13. The most common used biomarker for prostate cancer detection to 
date is the prostate specific antigen (PSA). Although PSA has adequate sensitivity the lack of 
specificity would results in considerable overdiagnosis and overtreatment in a population-based 
screening program14. In 2009, applying metabolomic screening on both plasma and urine 
samples from prostate cancer patients and controls, Sreekumar and coworkers reported a 
potential role of sarcosine in prostate cancer prognosis15. However, their finding has been 
difficult to replicate in independent populations16,17. Miyagi and coworkers18 recently reported 
that plasma free amino acids show great potential to discriminate between healthy controls and 
prostate cancer patients. Estrogen and androgen metabolites has been proposed as potential 
biomarkers for prostate cancer19,20, while Thysell and coworkers reported high levels of 
cholesterol in prostate cancer bone metastases in a metabolomic study of prostate cancer tissue 
and plasma samples21.   
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In conclusion, our project has failed in identifying novel prostate cancer biomarkers of clinical 
use. Future work may benefit from stricter sample handling that would increase number of 
molecules possible to study. Although no clinically relevant biomarkers were identified we did 
observe several metabolite features that associated with prostate cancer status. We were also able 
to locate several genes associated with the abundance of these metabolites. These results are 
novel and may advance our understanding of the biological processes related to the aetiology of 
prostate cancer and our research group intends to continue explore the these findings in 
continued research. 
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Abstract

Background: Prostate cancer (PC) is a common disease affecting older men. The current clinical 
test for PC measures serum prostate specific antigen (PSA). Due to insufficient sensitivity and 
specificity, overdiagnosis and overtreatment of harmless or nonexistent tumors, as well as missed 
aggressive tumors, are common occurrences. New biomarkers for PC, independent of PSA, would 
thus be highly useful. In this study we examined the serum metabolome, the set of all small 
molecules, for such biomarkers using an untargeted ultra-high performance liquid chromatography-
mass spectrometry (UPLC-MS) approach.

Materials and Methods: Serum samples, taken before treatment, from 287 PC cases (of which 99 
had advanced disease) and 188 population controls were analyzed by UPLC-MS. Detected 
metabolite features and pairwise feature differences were tested for association with PC status using 
linear regression and the ANOVA F-test, adjusting for sample storage time and patient age. The 
most PC-associated features were further tested for association to single nucleotide polymorphisms 
(SNPs) genome-wide.

Results: 6138 metabolite features were quantified and tested for association with PC status. Two 
associations were statistically significant after Bonferroni correction for 6138 tests (mass/charge 
ratio [m/z] 595.4: P=4.0E-06; m/z 422.2: P=7.1E-06). No pairwise feature difference associations 
were significant after Bonferroni correction for 6138*6137/2 tests. The four strongest PC-associated 
features (P-values < 1E-3) all had their strongest SNP associations located in introns of annotated 
genes (PDE7B, NRG3, IL13RA1, UGT3A1).

Conclusion: No metabolite features useful as PC biomarkers were found in this study, and the 
features associated with PC status could not be assigned a molecular identity. Studies analyzing an 
even broader spectrum of molecules than those detectable by UPLC-MS may be more successful. 
The PC-metabolite-associated genes discovered may indicate processes involved in PC aetiology.

Introduction

Prostate cancer (PC) is the most common non-cutaneous malignancy and the second leading cause 
of cancer death among men in developed countries. It has been estimated that in the year 2007, 
almost 800,000 men will be diagnosed with prostate cancer worldwide and 250,000 will die of the 
disease (Crawford 2009). 

For several years, serum prostate-specific antigen (PSA) testing and digital rectal exams (DRE) 
have been the standard measures for diagnosis of prostate cancer. However, since a high proportion 
of men with abnormal findings from PSA and DRE are not proven to have prostate cancer, 
unnecessary intervention is common. In addition, once prostate cancer is diagnosed, choice of 
treatment remains a major challenge.

The risk of overtreatment is substantial considering the excellent prognosis of a high proportion of 
men with untreated localized disease (Johansson et al. 2004) and the morbidity associated with 
curative treatment. Management by active surveillance with selective delayed intervention based on 
early PSA changes has been proposed as a strategy to reduce overtreatment of patients with indolent 
disease (Klotz 2005). However, although both baseline PSA measurements and rate of PSA change 
are important prognostic factors, they perform poorly in distinguishing those who will develop a 
lethal prostate cancer from those at low risk of disease progression (Fall et al. 2007). To this end, 
improved tools to distinguish lethal from indolent disease to guide clinicians in treatment decisions 
is critical.
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Cancer development and progression is characterized by multiple, complex molecular events. To 
decipher the molecular networks involved in tumor initiation and neoplastic progression, gene and 
protein expression have been extensively profiled in human tumors; however, few efforts have been 
performed to explore global metabolite alterations in this context.

Metabolomics is a field of research that attempts to provide a comprehensive picture of the 
physiological state of an organism by providing precise measurements of a large number of small 
molecules (Becker et al. 2012; Xie, Waters, and Schirra 2012; Patti 2011). One of two 
methodologies is most frequently applied in metabolomics – either nuclear magnetic resonance 
spectroscopy (NMR) or mass spectrometry (MS) based techniques. Commonly, chromatography is 
coupled to MS, a system which offers the benefits of partial separation of a complex mixture via 
chromatography, an additional mass dimension of separation, and molecular weight and 
fragmentation information.

To date several studies have applied metabolomic profiling to identify novel biomarkers in cancer 
research (Spratlin, Serkova, and Gail Eckhardt 2009). Although these studies have been restricted in 
number of metabolites being profiled and number of samples from disease-affected and unaffected 
individuals being screened, several interesting biomarkers have been identified including sarcosine 
in prostate cancer assessment (Sreekumar et al. 2009). The utility of sarcosine as a prostate cancer 
biomarker has however not been definitely proven (Issaq and Veenstra 2011). While these studies 
demonstrate the potential of metabolomics in identification of cancer diagnostic biomarkers, 
expanding the coverage of the metabolome, increasing the sample size, and using clinically relevant 
endpoints are actions likely to improve our ability to identify novel prostate cancer biomarkers.

The aim of the present study was to explore global serum metabolite profiles in a large population-
based prostate cancer study. Serum metabolite levels were contrasted between unaffected 
population controls, prostate cancer cases with indolent disease, and prostate cancer cases with 
aggressive disease.

Materials and methods

Study sample

The patients and controls for this study were selected from a biobank that was established as part of 
the Cancer of the Prostate in Sweden (CAPS) study of genetic and dietary risk factors for prostate 
cancer. Details of the sample collection procedure has been previously published (Lindmark et al. 
2004). In brief, CAPS is a population-based case-control sample of Swedish men diagnosed with 
prostate cancer between 2001 and 2003, and population controls who were frequency matched to 
the expected age distribution and geographic region of cases. Cases were identified from the 
Swedish cancer register, and controls from the Swedish population register. Clinical characteristics 
of cases were obtained from the national prostate cancer register (Adolfsson et al. 2007). All study 
participants provided written informed consent, and the study was approved by the local 
institutional review board. The full study biobank constitutes blood samples, separated into serum, 
plasma, and DNA, from 2875 PC cases and 1746 population controls.

For the present study, we analyzed serum from188 control samples, 99 samples from patients with 
aggressive PC, and 188 samples from patients with less aggressive PC. Aggressive disease was 
defined as fulfilling one or more of the following criteria: T stage ≥ 3, positive lymph node status, 
positive metastasis status, Gleason score ≥ 8, or blood PSA level ≥ 50 ng/ml at diagnosis, while 
patients not fulfilling any of the criteria for aggressive disease were classified as having less 
aggressive disease. For all prostate cancer patients included in the present study, serum was 
extracted from blood samples drawn before any treatment for their disease had been initiated.
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Ultra-Performance Liquid Chromatography-Mass Spectrometry profiling

Serum metabolomic profiles were acquired by ultra-performance liquid chromatography (UPLC) 
coupled with mass spectrometry (MS) at the Proteomics and Metabolomics Facility, Colorado State 
University, USA. Frozen serum samples, delivered from the Medical Biobank at Umea University ̊
were thawed and 200 μL transferred to an eppendorf tube. Proteins were precipitated by adding 
800μL of ice cold methanol, and the tube was spun at 5000g for 15 minutes to separate protein from 
supernatant. 400μL of the supernatant was transferred to an autosampler vial for UPLC-MS 
analysis. One μL injections were performed on a Waters Acquity UPLC system (Waters Corp., 
Milford, MA, USA). Separation was performed through a Waters Acquity UPLC C8 column (1.8 
μM, 1.0 x 100 mm), using a gradient from solvent A (95% water, 5% methanol, 0.1% formic acid) 
to solvent B (95% methanol, 5% water, 0.1% formic acid). Injections were made in 100% A, which 
was held for 0.1 min. A succession of linear gradients was used, from 0% B to 40% B in 0.9 
minutes, then to 70% B in 2 minutes, and finally to 100% B in 8 minutes. The mobile phase was 
held at 100% B for 6 minutes, returned to starting conditions over 0.1 minute, and allowed to re-
equilibrate for 5.9 minutes for a total run time of 23 minutes. Flow rate was maintained at 140 
μL/min for the duration of the run. The column was held at 50°C and samples were held at 5°C. 
Column eluate was infused into a Waters Q-Tof Micro MS fitted with an electrospray source. Data 
was collected in positive ion mode, scanning from 50-1000 at a rate of 2 scans per second with 0.1 
second interscan delay. Calibration was performed prior to sample analysis via infusion of sodium 
formate solution, with mass accuracy within 5 ppm. The capillary voltage was held at 3000 V, the 
sample cone at 30 V, the source temperature at 130°C, and the desolvation temperature at 300°C 
with a nitrogen desolvation gas flow rate of 400 L/hr. The collision cell was held at collision energy 
of 7 eV. 

Postprocessing of metabolite features

The software package XCMS (Smith et al. 2006) was used to align and extract measured ion 
intensities from the UPLC-MS chromatograms. Integrated peak intensities were assessed through 
the "matchedFilter" method in XCMS, which fits a second derivative Gaussian filter function to 
each peak to suppress noise. Peak detection parameters were set to 8 seconds full peak width at half 
maximum intensity, a minimum signal to noise ratio of 3, and a maximum of 100 peaks for each 
slice of the m/z domain considered.

Peak grouping across samples was performed with an 8 second bandwidth and a minimum fraction 
of 1% of all samples needed to display a peak. Retention time correction of the grouped peaks was 
performed using a loess smoothing function. After retention time correction, peak grouping was 
repeated as above, and signal intensities for each peak and sample were calculated by integrating 
the intensity curve. The same range was integrated in all samples whether a peak had been detected 
or not. 

The sample/feature matrix was normalized by scaling the feature intensities of each analyzed 
sample by a factor, so that all samples were given the same mean intensity (the mean of sample 
means before normalization). After intensity normalization, and removal of outliers (where the 
variance within replicate groups significantly exceeded the variance for the whole sample), final 
feature intensities were set to the means across three (if no outliers were removed) replicate samples 
for each biological sample, transformed to the 10-logarithm of the measured intensities.

Statistical analyses

Association between each normalized LC-MS feature and PC status was assessed through linear 
regression, in models with each measured feature's abundance as the outcome, and PC status as a 
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categorical predictor variable (with levels control, less aggressive, more aggressive). The analyses 
were further adjusted for age at inclusion, and sample storage time categorized in four equally long 
time bands, which were potential confounding factors. The ANOVA F-test was used to test the 
overall statistical significance of the PC status factor variable as a predictor for the abundance of 
each LC-MS feature. Analyses were performed using R version 2.15.1 (R Development Core Team 
2012).

It has been suggested that variation in pairwise ratios between metabolites can reflect variation in 
enzymatic activity and other biological processes (Altmaier et al. 2008). If such variation is also 
disease-related, analyzing metabolite ratios could provide aetiological insights not possible from 
single feature analyses. To assess such effects in our sample, we performed the same tests as for the 
single metabolites for all n(n-1)/2 pairwise differences between LC-MS features. Since data were 
log-transformed before analysis, this corresponds to investigating ratios on the original scale.

Genotyping and metabolite genome-wide association analysis

For the LC-MS sample at hand, genome-wide genotypes were available from previous studies. An 
association between a metabolite feature of unknown molecular identity and genetic variation near 
sequence coding for an enzyme acting on specific molecules may be helpful in identifying the 
feature at hand. The metabolites most strongly associated with changes in disease were therefore 
investigated for quantitative trait association to single nucleotide polymorphisms (SNPs) genome-
wide.

Genotypes were generated on the Affymetrix (Santa Clara, CA, USA) GeneChip Human Mapping 
500K and 5.0 platforms, by collaborators at the Wake Forest University, USA, following the 
manufacturer's recommendations. The average call rate for genotypes was 99.1%, and the 
concordance between replicated samples was greater than 99%. SNPs with no call for more than 5% 
of samples, or deviating from Hardy-Weinberg equilibrium (exact test P < 10-6) were excluded from 
further analysis. After quality control, additional genotypes were imputed using IMPUTE (Marchini 
et al. 2007) software and the CEU panel of reference haplotypes from the international HapMap 
project (The International HapMap Consortium 2007). After imputation, genotypes were called 
from imputed posterior probabilities. Most likely genotypes with a posterior probability greater than 
or equal to 0.95 were called as that genotype, while those with lower probabilities were set to 
missing. After imputation, quality control was rerun as described above for the imputed genotypes, 
leaving 1,442,839 SNPs available for analysis.

Quality control and genome-wide SNP-metabolite quantitative association analysis was performed 
using PLINK (Purcell et al. 2007).

Feature identification

Molecular identification of peaks from a non-targeted LC-MS metabolite profiling experiment is 
not straightforward (Wishart 2011; Theodoridis, Gika, and Wilson 2011). Here, the following 
workflow was utilized for feature annotation. First, accurate mass measurements were searched 
against a variety of metabolite databases including the Human Metabolome Database 
(http://www.hmdb.ca/), Metlin (http://metlin.scripps.edu/), and LipidMaps 
(http://www.lipidmaps.org/). Second, a combination of the accurate mass measurement and the 
isotopic distribution of the mass spectrometry peaks were imported into the elemental composition 
calculator (Waters MassLynx software) to generate a “best fit” molecular formula. Next, the best fit 
molecular formula was used to filter the database search results to yield a putative metabolite 
identification. Last, whenever possible, fragmentation information for the metabolite feature was 
compared with fragmentation of the putative metabolite found in the literature, and/or mass spectral 
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database, and/or from a commercially available pure standard. 

Fragmentation spectra were collected from representative pooled serum samples using a Waters 
Acquity UPLC coupled with a Waters Xevo G2 TOF MS. Chromatographic conditions were 
identical to those described above. Mass spectrometry data was collected in positive ion mode, 
scanning from 50 to 1200 m/z at a rate of 5 scans per second with a 0.014 second inter-scan delay. 
Calibration was performed prior to sample analysis via infusion of sodium formate solution (0.01 
M) in 80 % acetonitrile and 20% water, yielding a mass accuracy within 2 ppm RMS. The capillary 
voltage was held at 0.8 kV, source temperature at 130, and the desolvation temperature at 450 with a 
nitrogen gas flow rate of 1200 liters per hour. Data was collected in MS^E mode in which the 
collision cell voltage is switched between a low voltage state (4 V) and high voltage state (ramped 
from 12 to 28 V over 200 ms) on alternate acquisitions to generate both molecular mass 
measurement and fragmentation data. A method recently described by Broeckling et al., was utilized 
for the reconstruction of MS^E spectra for each significant molecular feature (Broeckling et al. 
2012). 

We report metabolite identification confidence based on metabolomics standards initiative 
recommendations (Sumner et al. 2007). Specifically, level 1 refers to confident molecular 
identification based on orthogonal analytical parameters (accurate mass, retention time, and MS/MS 
fragmentation) relative to an authentic compound. Level 2 refers to a putative identification based 
on physicochemical properties and/or spectral similarity with literature or spectral libraries. Level 3 
refers to the putative identification of a compound class based on physicochemical properties or 
spectral similarity. Level 4 refers to an unknown compound.

Results

In total, 6138 metabolite peaks were called from the raw LC-MS data using XCMS. Peaks were 
assigned identifiers on the format “{mass/charge ratio}_{median retention time}”, which will be 
used henceforth when referring to specific features. Initially we performed association analysis 
between PC status and each LC-MS feature in linear regression models adjusted for age and sample 
storage time. A quantile-quantile plot of observed versus expected log10(P)-values is given in Figure 
1a, indicating a slight excess of significant tests. In Table 2, details of the top four significant 
associations (P<1.0E-3) are given. Applying a Bonferroni correction (significance threshold = 
0.05/6138 ≈ 8.1E-06), two LC-MS features remained study-wide significant (595.4_153, P=4.0E-6; 
422.2_315, p=7.1E-6). 

The four metabolites most strongly associated to PC were explored for association with 1.4 million 
SNPs distributed across the genome. An overview of the results is given in a manhattan plot in 
Figure 2 (-log10(P)-value vs genomic position). The position of the SNP with the lowest P-value for 
each feature in Table 2 is reported in Table 3, along with the marker's location in relation to the 
nearest annotated gene. For each genome-wide set of metabolite-SNP tests, the Bonferroni-
corrected study significance threshold is 0.05/1442840 ≈ 3.5E-08. 

For one of the four metabolites, study-wide significance was observed; abundance of metabolite 
feature 174.1_53 was associated with the SNP rs2247035 at a significance level of 1.4E-08. This 
SNP is located in an intron of the gene interleukin 13 receptor, alpha 1 (IL13RA1) on chromosome 
Xq24. Furthermore, for each of the other three metabolites, the strongest association with genetic 
markers was observed within an intron of an annotated gene; phosphodiesterase 7B (PDE7B) on 
chromosome 6q23, neuregulin 3 (NRG3) on chromosome 10q23, and UDP glycosyltransferase 3 
family, polypeptide A1 (UGT3A1) on chromosome 5p13.

Next we explored pairwise log(metabolite) differences (corresponding to ratios on the original 
scale) for association to PC. Metabolite ratios have been suggested to show more robust 
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associations than single metabolic features, since they may correlate with enzyme function or flow 
through metabolic pathways. Top results from the analysis of 6138*6137/2 pairwise differences are 
presented in Figure 1b and Table 4. No metabolite pair was study-wide significantly associated to 
PC after Bonferroni correction for the number of tests performed (significance threshold ≈ 2.7E-
09). Seven metabolite feature pairs were associated at a significance threshold of 1.0E-7. Five of 
these pairs involved the metabolic feature 595.4_153, which was the most strongly associated 
feature in univariate analyses. Further metabolite features that were implicated in these pairwise 
assessments were 114.1_118, 411.3_285, 443.3_275, 451.2_266 and 597.4_306. Each of the two 
remaining pairs significant at the 1.0E-7 threshold included feature 422.2_315, the second most 
strongly univariate associated metabolite, in combination with features 226.2_212 and 581.3_446.

The molecular identities of the most strongly associated features from univariate and pairwise 
assessments were determined according to the workflow described in Materials and Methods. For 
the four most strongly associated features in univariate analysis (Table 2) we were unsuccessful in 
providing the molecular identity of any of the feature. From the pairwise analysis we were able to 
identify three of the seven additional features implicated including caprolactam, L-Phosphatidic 
acid and the peptide Tyr-Lys-Thr. Each of these molecules were implicated in combination with 
595.4_153, the most strongly associated metabolite feature. We were unable to retrieve molecular 
identities for any of the two features implicated in combination with the 422.2_315 feature 
(Table 4).

Discussion

In this study we applied a global untargeted UPLC-MS strategy to identify novel biomarkers for PC 
detection. Utilizing serum samples from prostate cancer patients collected at time of diagnosis, 
before initiation of any treatment, and from unaffected population controls, a total of 6138 
metabolic features were explored for association with disease status. Potential biomarker utility of 
explored features was assessed by contrasting normalized abundance levels across controls, patients 
with indolent disease, and patients with more aggressive disease. Overall the results from this study 
were negative. In univariate analysis only two of the 6138 metabolic features explored were 
observed as study-wide significantly associated with disease status after correction for multiple 
testing. Moreover, we were not able to derive the molecular identity of the two most strongly 
associated features, probably due to their low observed abundance. Since a robust association is a 
necessary (but not sufficient) criterion for a new biomarker, the immediate usefulness of these 
findings as biomarkers is low.

The four metabolite features showing the strongest association to prostate cancer were explored for 
association with SNPs genome-wide. Interestingly, for each investigated metabolite the strongest 
SNP association was observed within an annotated gene.

The metabolite feature 595.4_153 was associated with variation in the gene PDE7B, whose protein 
product hydrolyzes the second messenger cAMP, a key regulator of many important physiological 
processes. Variation in the gene NRG3, encoding a direct ligand for the ERBB4 tyrosine kinase 
receptor, was most strongly associated with metabolite 422.2_315. Neuregulins act as growth 
factors, and have been suggested in the aetiology of several cancers, including prostate and breast 
(Montero et al. 2008). Levels of the feature 174.1_53 were associated with variation in the 
interleukin 13 receptor, alpha 1 chain (IL13RA1). Though IL13RA1 itself has not to our knowledge 
been associated with PC before, the alpha 2 chain of the same receptor (IL13RA2) has been reported 
to be differentially expressed in a metastatic prostate cancer cell line, and suggested as a target for 
prostate cancer treatment (He et al. 2010). Finally, the metabolite feature 260_142 was associated 
with variants in the gene UGT3A1, whose protein product conjugates substrates with N-
acetylglucosamine to increase water solubility and enhance excretion. UGT3A1 acts on steroids, 
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particularly estrogen analogs (Meech and Mackenzie 2010, 3), and hypermethylation of this gene in 
breast cancer tissue has been associated with tumor relapse and worse survival (Hill et al. 2011). 
Despite our inability to derive explicit molecular identity of the top four PC-associated metabolite 
features, these genetic mapping results implicates these features in biological processes possibly 
related to PC aetiology.

We also examined pairwise differences between all LC-MS features (corresponding to ratios on the 
original scale of measurement) for association to PC. If differential activity of enzymes were 
associated with PC status, then the ratio of substrate to product would better reflect that association 
then either abundance by itself. However, no such difference was study-wide statistically significant 
after correction for multiple testing. Of the seven strongest associated feature-pairs, five involved 
the feature 595.4_153, which showed the strongest association in univariate analyses. We were able 
to determine the molecular identity of three of the five metabolite features implicated in 
combination with 595.4_153 including caprolactam, L-Phosphatidic acid and the peptide Tyr-Lys-
Thr. Of note, caprolactam is a non-endogenous compound used in the manufacturing of nylon and 
produced around the world in very large quantities. Phosphatidic acids are fatty acid derivatives of 
glycerophosphates, and are established intracellular signaling lipids.

Major strengths of this study include the large sample size, and the unbiased assessment of serum 
metabolite features obtained using UPLC-MS. Furthermore, the availability of genome-wide SNP 
data for the same samples allowed us to further characterize the PC-associated features, and 
speculate on their role in biological pathways related to PC.

Limitations include the difficulties in mapping LC-MS features to molecular identities with 
sufficient certainty. Furthermore, the sampling strategy was in retrospect found to be suboptimal. 
Since age was seen to have a strong effect on the levels of many metabolite features (data not 
shown), as well as being strongly associated to PC status, there was a potential for confounding in 
the statistical analysis. Sample storage time showed the same problematic properties, because only 
cases were collected for the first six months of the study. These limitations were partly overcome by 
adjusting for these potential confounding factors in regression analysis, but the power to detect 
differential metabolites would have been greater had the sample been more balanced in terms of age 
and storage time between groups. 

UPLC-MS is known to only capture part of the human serum metabolome (Psychogios et al. 2011). 
Potential prostate cancer biomarkers in the spectrum of molecules outside the UPLC-MS-detectable 
could thus not be assessed in this study. Studies combining several untargeted detection methods 
such as UPLC-MS, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic 
resonance (NMR) spectroscopy, would increase the possibilities of finding new disease-associated 
molecules.

In summary, we have examined the human UPLC-MS-detectable serum metabolome for prostate 
cancer biomarkers in a moderately sized Swedish case-control sample. No features of immediate 
biomarker utility were found, and most features showing association to PC status could not be tied 
to a molecule identity with certainty. Patient age and serum sample handling were identified as 
important covariates to consider when designing and analyzing untargeted metabolomics data.

The success of genome-wide association studies (GWAS) in uncovering new variant-disease 
associations has shown that an untargeted (or at least very broadly targeted) approach can add 
important new knowledge to disease aetiology. Since the metabolome is “downstream” of the 
genome in the path to disease, it makes intuitive sense that disease status and severity should be 
reflected by metabolomic changes. However, the metabolome is nowhere near as constant as the 
genome over time, and the field of metabolomics for disease assessment is still in its infancy. If the 
successes of the GWAS era are to be replicated in metabolomics, increased rigor in sample 
collection and handling strategies, refinement of biochemical and statistical methods, and increased 
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sample sizes will be required.
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Figures

Figure 1. a) Quantile-quantile plot of 6138 single metabolite to PC association tests. b) Quantile-
quantile plot of 6138*6137/2 pairwise metabolite differences to PC association tests.

Figure 2. Manhattan plot of top PC-associated metabolites vs genome-wide SNPs
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Tables

Table 1: Descriptive Statistics by Prostate cancer status

Controls Cases
(less aggressive)

Cases
(more aggressive)

N = 188 N = 188 N = 99
Tumor stage (T):
1 – 2 100% (188) 36% (36)
3 – 4 0%(0) 64% (63)
Nodal stage (N):

0 6% (12) 15% (15)
1 0% (0) 5% (5)
X 94% (176) 80% (79)

Metastasis stage (M):
0 24% (45) 46% (46)
1 0% (0) 5% (5)
X 76% (143) 48% (48)

Gleason score:
2 – 6 100% (188) 28% (28)

7 0% (0) 31% (31)
8 – 10 0% (0) 26% (26)

NA 0% (0) 14% (14)
PSA (ng/ml) 0.9 (0.6 – 1.4) 6.6 (4.7 – 8.2) 19.6 (10.4 – 38.1)
Age at diagnosis/inclusion 
(years)

63.7 (60.1 – 70.7) 65.8 (61.4 – 70.5) 73.7 (66.5 – 77.1)

Body Mass Index (kg/m2) 26.3 (24.2 – 27.8) 25.7 (24.1 – 28.1) 26.0 (23.9 – 28.7)
Sample storage time (days)

2161 – 2421 39% (74) 38% (72) 26% (25)
2448 – 2716 46% (86) 29% (55) 28% (27)
2721 – 2990 15% (28) 21% (39) 24% (24)
3016 – 3276 0% (0) 12% (22) 22% (22)

Continuous variables are reported as "median (interquartile range)".
Numbers after percents are frequencies. X, not assessed. NA, not available. PSA, prostate specific 
antigen.
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Table 2. Top PC-associated single metabolites

Molecular Feature 
(m/z_retention time)

PC overall association 
P-value 

Metabolite 
Identification

Identification 
Confidence

595.4_153 4.0×10-06 Unknown 4

422.2_315 7.1×10-06 Unknown 4

174.1_53 6.6×10-04 Unknown 4

260_142 9.1×10-04 Unknown 4
M/Z, mass to charge ratio. P-values from ANOVA F-test (2 d.f.), adjusted for age at inclusion and 
sample storage time. Metabolites marked gray were significantly associated to PC status after 
Bonferroni correction for 6138 tests.

Table 3. GWAS results for top PC-associated single metabolites

Molecular Feature 
(m/z_retention time)

Metabolite GWAS 
lowest P

Position (hg18) Nearest gene

595.4_153 4.9×10-08 chr6:136374051 PDE7B (intron)

422.2_315 1.4×10-06 chr10:83843772 NRG3 (intron)

174.1_53 1.4×10-08 chrX:117756115 IL13RA1 (intron)

260_142 4.6×10-06 chr5:35999264 UGT3A1 (intron)
Metabolites marked gray were significantly associated to SNPs at the reported loci after Bonferroni 
correction for 1442840 tests.

Table 4. Top PC-associated pairwise metabolite differences

Molecular Feature Pair
PC overall 
association 

P-value
Metabolite Identification

Identification 
Confidence

595.4_153 - 114.1_118 3.2×10-08 Unknown - Caprolactam 4 - 1

595.4_153 - 443.3_275 4.2×10-08 Unknown - Unknown 4 - 4

597.4_306 - 595.4_153 7.1×10-08 L-Phosphatidic acid - Unknown 2 - 4

595.4_153 - 451.2_266 7.7×10-08 Unknown - Unknown 4 - 4

595.4_153 - 411.3_285 8.4×10-08 Unknown - peptide (Tyr-Lys-Thr) 4 - 3

581.3_440 - 422.2_315 9.4×10-08 Unknown - Unknown 4 - 4

422.2_315 - 226.2_212 1.0×10-07 Unknown - Unknown 4 - 4
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Serum	  metabolomics	  and	  prostate	  cancer	  survival.	  R.	  Szulkin1,	  R.	  Karlsson1,	  A.	  
Heuberger2,	  M.	  Hong1,	  C.	  Broeckling2,	  J.	  Prenni1,	  J.	  Prince1,	  F.	  Wiklund1	  	  
1)	  Department	  of	  Medical	  Epidemiology	  and	  Biostatistics,	  Karolinska	  Institute,	  
Stockholm,	  Sweden;	  2)	  Department	  of	  Biochemistry	  and	  Molecular	  Biology,	  
Colorado	  State	  University,	  Fort	  Collins,	  USA.	  
	  
Introduction:	  Established	  prognostic	  factors	  perform	  poorly	  in	  predicting	  
disease	  relapse	  among	  patients	  treated	  for	  prostate	  cancer.	  Identification	  of	  
novel	  biomarkers	  improving	  the	  prognostic	  information	  is	  of	  great	  importance	  to	  
guide	  individual	  therapy.	  Materials	  and	  Methods:	  Post-‐treatment	  serum	  samples	  
from	  a	  nested	  case-‐case	  design	  comprising	  269	  prostate	  cancer	  patients	  with	  
lethal	  outcome	  and	  269	  patients	  with	  non-‐lethal	  outcome	  were	  used.	  All	  patients	  
were	  diagnosed	  between	  year	  2001	  and	  2003	  in	  Sweden	  and	  followed	  up	  for	  
survival	  until	  December	  2010	  through	  record	  linkage	  with	  the	  national	  Cause	  of	  
Death	  Registry.	  Untargeted	  ultra	  performance	  liquid	  chromatography	  (UPLC)	  
coupled	  with	  mass	  spectrometry	  (MS)	  was	  employed	  to	  screen	  for	  novel	  prostate	  
cancer	  biomarkers.	  Normalized	  and	  log-‐transformed	  metabolite	  concentrations	  
were	  explored	  for	  association	  with	  prostate	  cancer-‐specific	  survival	  in	  time-‐to-‐
event	  analysis	  using	  death	  from	  prostate	  cancer	  as	  endpoint.	  Results:	  Untargeted	  
metabolomic	  profiling	  of	  prostate	  cancer	  serum	  samples	  revealed	  a	  total	  of	  5209	  
LC/MS	  profiles.	  Univariate	  analysis	  of	  individual	  normalized	  feature	  levels	  
indicated	  23	  peaks	  to	  be	  study-‐wide	  significant	  associated	  with	  prostate	  cancer-‐
specific	  survival.	  Of	  note,	  at	  the	  1x10-‐8	  significance	  level	  we	  observed	  11	  
associated	  peaks	  as	  compared	  to	  1x10-‐4	  expected	  peaks	  under	  the	  null	  
hypothesis	  of	  no	  association.	  Further	  assessment	  exploring	  pair-‐wise	  ratios	  
between	  metabolomic	  peaks	  revealed	  additional	  features	  significantly	  associated	  
with	  prostate	  cancer	  prognosis.	  Conclusion:	  Untargeted	  metabolomic	  profiling	  of	  
prostate	  cancer	  serum	  samples	  have	  identified	  a	  considerable	  number	  of	  
molecular	  features	  strongly	  associated	  with	  disease	  prognosis.	  Further	  analysis	  
is	  underway	  to	  identify	  these	  profiles	  molecular	  identity	  and	  to	  explore	  
molecular	  pathways	  involved.	  
	  
You	  may	  contact	  the	  first	  author	  (during	  and	  after	  the	  meeting)	  at	  
robert.szulkin@ki.se	  
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